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A Class of Tests for Multivariate Normality Based on

Linear Functions of Order Statistics

Murray A. Aitkin

Macquarie University and Educational Testing Service

SUMMARY

A class of tests for normality using the ratio of two estimates of the

standard deviation is generalized to provide a class of tests for multi-

variate normality using a characterization of the multivariate normal.

The powers of some of the tests are examined numerically and compared with

the power of a recent similar test.

1. INTRODUCTION

Tests for normality based on the ratio of two estimates of the stan-

dard deviation from a single sample have been proposed by several authors.

We restrict attention here to those statistics using the usual estimate

based on the sum of squares in the denominator, and an estimate based on

a linear function of the sample order statistics in the numerator. Such

statistics include the ratio u of range to standard deviation (David,

Hartley, and Pearson, 1954), Shapiro and Wilk's (1965) statistic W based

on the best linear unbiased estimate of the standard deviation, and

D'Agostino's (1971) statistic D , based on Gini's mean difference.

Similar statistics could easily be constructed from other order statistic

estimators of the standard deviation, for example, the mean deviation

about the median (Nair, 191+7).
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Malkovich and Afifi (1971) have generalized the W statistic to

the multivariate case using an approximation to a union-intersection test.

In this paper we generalize the class of statistics described above

to the multivariate case by a union intersection procedure different from

that considered by Malkovich and Afifi. Percentage points for some of

these statistics are obtained by empirical sampling. The empirical powers

of the tests are examined for certain nonnormal alternatives considered by

Malkovich and Afifi.

2. TESTS FOR NORMALITY

Let X
ln

< X
2n

< < X
nn

be the order statistics in a sample of size n

from a normal population N(.i,a2) , and let bin < b
2n

< < b
nn

be a

set of constants. The sample"correlatiorr between the Xin and the bin

is

where

n
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Defining

and defining

n

a. (bin - 17))/( E
0)1/2

in
1

n

(X
in

- 50
2

s
2

the sum of squared deviations about the mean, we may express the "cor-

relation" as

where now

n

r(a,n) = Z a. X. /s
1

in in

n n

Z 0 E 1
in in

1 1

Several test statistics proposed for testing normality may be put

in the above form. David, Hartley, and Pearson (1954) considered

u (Xnn X1r) (s /(n 1)123

= (2(n - 1))1/2 r(al,n)

where a'
1

(-2-1/2,0,0,...,0)24/2) . Shapiro and Wilk (1965) consider
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W = r"-(a2

a
2

V
-1

m/bm'V
-2
m)

1/2

m and V beingyrespectively, the mean vector and covariance matrix of the

vector of normal order statistics. D'Agostino (1971) considers

where

n

E (i - (n + 1))Xin
1

D -

n
3/2

s

r/ 2 2 1/2
= 101 1)/12n ) r(a n)

3'

a3in = (i - (n + 1 ))/(n(n2 - 1)/12)1/2

Pearson and Chandra Sekar (1936) consider

where

1/2(xnn

= (n 1)1/2 r(%,I1)

all-in =
-(n(n - 1))-1/2 I nfor i

1= ((n - 1)/n)1/2 for i = n
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Other such statistics can easily be constructed. For f,xample, Nair

(1947) considers

of a :

m' the mean deviation about the median, as an c'timate

n k

m' = E (X
in

i))

1

E (X
n-i+1,n

xin ) ,

1

-
where v is the sample median, and k =

n 1
if n is odd, k = 7

if n is even. A test for normality could then be based on

r(a5,n) = m'/(2k)1/2 s

3. TESTS FOR MULTIVARIATE NORMALITY

Let X be a p -component random vector. It is well known (sEe, for

example, Anderson, 1958) that X is multivariate normal if and only if every

linear function fiX is univariate normal, where f_ is an arbitrary fixed

vector. We use this property to construct a union-intersection test for

normality.

Let X ...,X
I' n

be a random sample from a population. Let

arbitrary fixed vector, and define

Z* = , i = 1 n, .

be an

the dependence of Z* on being understood. Let the ordered Zt be

denoted by Z*
ln

<
nn

< Z* . We construct any of the statistics

n n
E ai Zt (Zt

inin i
1 1

D.)2)1/2

n
= E a. Z*

n
/(t'Sg)

1/2

in i
1
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where S is the matrix of sample cross-products. IL is clear thy-. t such

statistics are origin and scale invariant for all ;4 , i.e., do :ic.-vt;

depend on r p. and L, F, e for all , where Is and E are the mean

and covariance matrix of X . Hence they do not depend on it and E .

Without changing the problem, we may therefore make a linear transformation

Y AX +b

where A is a p x p positive definite matrix and b an arbitrary

vector. Take A = S-1/2 and b = S-1/2)? where S1/2 is the (unique)

symmetric square root of S , so that

Y. = S-1/2(2 - .

The components of Yi are then scores on standardized principal component

variables with y = 0 Z(Y. - Y-)(y. I . Define- - 1i

Z. = i = 1., ...,n

and denote the ordered Z.
1

by Zln < < Z
nn

. Then we consider the

statistics

n

r(61')
n) = E ai z // 1,01/2

n in `

For different choices of a , a one-sided or two-sided test may be appro-

priate (for example, the test based on W is one-sided, but that based on

u two-sided). If small values of r (a,(,n) are significant, we do not

reject a't, level a the hypothesis of normality of ifif

rZ(a,n) < r(a, L, n)
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A size a union-intersection test for the hypothesis of multivariate normality

of X will not reject if

for all , so that

ji-a(ai,n) < r(a, n)

inf r(a, n) > cl-a(a,n)

1-C6
where cL (a, n) is the lower 100a per cent point of the distribution of

inf r(a, n) . A conservative two-sided test at level a ma; Je obtained by

not rejecting the normality hypothesis when

inf r(a, L, n) > cL1-436/2(a,n)

L

sup r(a, n) < caU/2(a n)

L

a
where c

U
(a n) is the upper 100a per cent point of the distribution of

sup r(a, n)

4. SUP r AND INF r FOR p = 2

Consider first the case p = 2 . The linear function Z = i'Y is then

i1Y1 12Y2
Since r(a, n) is independent of scale, we may assume without

any loss of generality that 1 = 1 , /2 = L , since it is only the ratio /2/4
that matters. (We might instead set = sin 0 , '2 = cos 0 and map each point

into a trigonometric function. Such a procedure has been used by Andrews

(1971) in another context. The results are equivalent for p = 2 , but

for p > 2 the polar transformation becomes less convenient.) We consider

therefore the values

8
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Z1 Yll fY21' Zn 1ln + 1 ;2n

These may be plotted as n lines in the (Z,c0 plane. The n lines
intersect in N = (2) points, defining N values of / < .. <

(some of which may be coincident). The points define N 1 regions

L. (Y :f
-1

<f<f) j = 1, ...,N 1 , where fo -co , /i\wi co

The regions L. have the property that the ordering of the Zi =

is the same for all & L. .

11.)w in the region L. let the ordered Z. be

and write

Zj < < ZiIn nn

Zin = Yj + f/Yjli 2i

Then for X L . ,

where

Now

r(a, /, n) = r(a, f, n) = ( E a. Y. E a. Y21j.)/(1 + n2
)
1/2

in
1 1

(v3j_ Ks )/(1 61/2

. n
SJk = F., a. Y. k = 1,2kl1

inf r(a, (, n) = inf inf r(a, /, n) ,
j



r(a,for E L. , (a, n) is the ratio of a linear form to the square

root of a positive definite quadratic form. It is well-known that this

ratio, for unrestricted % , has only one extreme value, a maximum equal to

(.2 1 /2

1':1 +

2
, which occurs when

2 1
. Hence

1

inf r(a, r(a, n)

If f.q/Sii0 La , the supremum of r(a, n) will also occur at

an If g s/si E L
2 1

write Pjt = S,/Sij , and then

sup r(a, n) = sup (r(a, n), r(a, n))

REMARK

The supremum simplifies considerably for the u statistic of David,

Hartley and Pearson and for the T statistic of Pearson and Chandra Sekar.

We have

-1/2/
nn

-Z
ln )/(1.1)1/2)suptsup r sup r(2-1) I, n) = 2

u

and if we use the normalization I'L =

sup r
u
= 2

-1/2
sup(Z - )zlnnn

Thus sup r
u

is a multiple of the greatest distance between the projections

of any two points Y3..,Y. , on the hyperplane Z = CY . The distance will
_

be greatest when the hyperplane passes through the two points which are
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farthest apart, i.e., at the diameter of the convex hull of the points

Y1, ...,Yn . Thus

-1/
(29p r

u
= c.2 supf (Y. - YJ )' (Y.

a - Y.J ))
1/c2

= 2-1/2sup( (X. - X P
1

S-1(X. - X .)11/-1
i)j

in terms of the original variables.

Similarly,

sup r = sup r (4, n)

= (1 - Ill.-)
-1/2

sup (Z

n

n/(LIL)1/") ,

L

and taking L' = 1 as above,

sup r

T

=
1\-1/2

- sup Z

1 nn

Thus sup r is a multiple of the greatest distance from the origin of the

LT

projection of any point on the hyperpiane Z = L'Y . This distance will be

greatest for the point furthest from the origin. Thus

sup r
T
= (1- .--)-1/2sup(V11 y.)1/2

= (1 - -1--n)-112supt(x.- 5)ts-1(x. -)T))112

in terms of the original variables. These results hold for all p , but no

corresponding results hold for inf r or inf r , or for sup r(a, n)
u T

in general, since the other statistics do not have a simple distance inter-

pretation. Thus for ru , no explicit calculation of the supremum is



necessary, for it must occur for one of the vectors L already required for

the infimum. For r , the explicit calculation is necessary unless Y. = Y

for some i .

5. AN EXAMPLE

Below appears part of Student's data on the number of hours increase in

sleep gained from the use of two drugs (Anderson, 1958, p. 51). For simplicity

we have taken only the first five subjects.

Patient Drug A (K1) Drug B (K2) Y
1

Y
2

1 1.9 0.7 0.58592 0.50966

2 0.8 -1.6 0.23394 -0.68989

3 1.1 -0.2 0.18796 0.10817

4 0.1 -1.2 -0.33245 -0.31752

5 -0.1 -0.1 -0.67537 0.38958

The matrix of sample cross products S is

S = 2.592 S-1/2 = 0.704,134 -0.183,7271

1.544 3.388 -0.183,727 0.609,414]

while 5c' . (0.76, -0.48) . The principal component scores Ya . = S-1/2(X. T)
- -a -

are given above in the columns Y1 , Y2 . The (2) = 10 points of intersec-

tion r . .

are obtained by solving simultaneously the pairs of equations

giving

Y,.
/Y2i

Y + /Y .

2i lj 2j

Y - Y .

/ -
11 lj

Y
21 .

- Y
2j

. = 1, ,5
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(If Y
2i

- Y
2j

should be zero, Z is defined by Zi .) The 10 values

of , ordered from smallest to largest, are

- 10.50375 0.05761
-1.22251 0.48497
1.110211. 0.84237
-0.99121 1.52104
-0.29343 3.06787

Suppose we wish to find sup ru and inf r
u

. Taking the value
x

/I = -10.50375 , corresponding to the intersection of Z
1

and Z
5

, the Z.

1 1are -4.76742, 7.48037, -0.94823, 3.00270, -4.76742. Then Z
55

- z
15

= 12.211.779
,

(2(1 -i- e))1/2 = 14.92171 , r(al, 42 n) = 0.8208 . On repeating the calcula-

r values are obtained;tion for the other nine values of / , the following

.8208 .8953

.9979 -8395

9975 8735
.9940 8455
.8319 .8836

To test for a local maximum in L
1

, the ordering of the Z.: < Z
5
<

Z3 < z < Z
2

defines the orderings

0.58592 0.50966
- 0.67537 0.38958
0.18796 0.10817
-0.33245 -0.31752
0.23391 -0.68989

of Y1 and Y2 respectively. The corresponding values of Si
1

and S2 are

-1/2
2 (0.2.1.094 - 0.58592) - 0.211.889 and 2

-1/2
(-0.68989 - 0.50966) = -0.84820

respectively. Then / = S2 /Sji. = 3.11.0793 L1 . Hence there is no local

maximum for , E L1 . On repeating this procedure for the other L. ,

only one local maximum occurs, namely r = 0.8711.0 when g= 0.90070 in

L
9

. This does not yield a global maximum, so that

13
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inf r(a

I

, /, n) = .8208 at / = -10.50575

sup

r

r(21, ,, n) = .9979 at X = -1.22251

To verify the supremum in this case, we note that .

2
-1/2

((Y_
2

- Y_NY-2 - Y ))
1/2

= .9980
)

which agrees with the above result within round-off error.

6. GENERAL p

The argument in §4 can be extended directly to any p . Without loss

of generality we consider the standardized principal variables Y. = S-1/2(X.
a.

- T) ,

and again take the linear function ky as yi + X1Y2 + + Xp_lYp . The

values Zi = Yli + /1Y2i + + ip_IYpi now define n hyperplanes. These

intersect p at a time in (n) points, defining (n) values of , which

then define regions with the property that the ordering of the Zi is fixed

in each region. Again the infimum of r(a, L, n) will occur at one of the

vertices of the region, and the supremum will occur either at one.of these

points, or at a local maximum if one occurs in a region, the maximum then

P j2 1/ 2 . n

being ( E S ) , occurring when /k = qt/S1 , where qc = E ainYL
k1 1

k = 1,...,p , the j superscript denoting the j -th region.

However, the ordering of the Zi each of the (n) values of L

becomes a major computational problem for p > 2 . For p = 2 , it is neces-

sary to order the Zi only once, for if the ordering in (say) Lo is

14
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established, then it is known that in Li , the ordering of ;)ust two observa-

tions is interchanged from that in L0 , and these observations are identified

bYtheorigirmadeterrainationof3.7.ThustheordcringoftheZn1 in every

L. can be obtained with just one ordering. This does not happen for p > 2 ,

however, essentially because the points cannot be ordered on one dimension.

,

The ordering must therefore be recalculated at each of the (
ny

values of

a very time-consuming process. Some saving in time is possible for ru , for

this requires for each A only the maximum and minimum Z , not a complete

ordering.

We therefore consider an alternative procedure. Let

Z =
1
+ XY

2
+ /

2
Y3 + + /P.lYp .

Then Y is mapped into a polynomial in the (Z,() plane. The results of

54 may now be extended with some changes, but we note that all possible linear

functions L'Y cannot be generated in this way. Thus this procedure may be

less powerful against certain kinds of departures from normality than one

which considers all linear functions.

The n polynomials Zi now intersect two at a time in p - 1 points,

defining (p - 1)(121) points /i (some of which may be coincident or imaginary,

corresponding to complex roots in / of Z. - Z. = 0 ). The regions L. are

defined as before, and in L. ,

P ir P 2(k-1) 1/2
S /"--)/( / )

r(a, n) = (

k=1 k=1

Further complications now arise as this function has multiple maxima and

minima. We shall ignore these however and consider only the points I.

defined above. Again this may result in some loss of power: this question is

examined in §8. S(e thus evaluate

15
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inf r(a, /j, n)

and sup r(a, %., n)

Alj

and accept or reject the hypothesis of multivariate normality accordingly.

7. OTHER TESTS FOR MULTIVARIATE NORMALITY

Tests for multivariate normality have recently been considered by

Malkovich and Afifi (1971), in a study including the tests discussed in

Kowalski (1970) and some others. In particular, they generalize the skewness

/2
and kurtosis statistics b

1

1
and b

2
to the multivariate case by a union-

intersection argument. Shapiro and Wilk's W is also generalized, but by a

procedure different from that described in §4 and §6. Rather than obtaining

the infimum of W over all linear functions they consider the linear

functionL'XwhichproducesavalueofWas close to its lower bound as
of.

possible. It is known (see Shapiro and Wilk (1965) for details) that W

attains its lower bound when

X. (n - 1)/(nain)

Xi - X = -ignain) ,

for i = 1,...,n , i L j , for any j . Malkovich and Afifi consider the

vector L which minimizes

[P(Xj (n - 1)/(nain)]2
iE

[/'(x.
1

1/(nain))2
j

which is
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Since j may take any value from 1 to X. is chosen to maximize the
-3

denominator of W . Thus let m be such that

m - TPS-1(X m - = max X. - T)'S-1(X - T)- - -

Let the ordered values of

Uj = (Xi - T)'S-1(Xin - T

be U < < U
nn

. Then the Malkovich-Afifi statistic is
ln -

Wp = [Ea. U. ]2/(Xm
- TPS-10C -T)in in --

If we use the standardized principal variables

Y . = S
-1/2

(X . - )

this reduces to

where

Wp
,

= [Ea. V. J /Y1 Y
in in -m -m

V. =
-m

V e < V
nn

are the ordered V. and m is such that
In

Y'Y = max V.Y.
-m-m

1<j<n

The null distributions of the statistics r described in §4 and §6

seem analytically intractable, as the corresponding univariate statistics

in general do not have simple forms, and the multivariate statistics are

obtained by data-based linear functions of X . Percentage points of the
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statistics were therefore obtained by simulation, using samples of 500. A

more accurate table of percentage points is in preparation, but the results

from samples of 500 should give a clear picture of power properties.

8. POWER RESULTS

Approximate lower percentage points of Malkovich and Afifi's W ,

,ofWmin.infr2(a2dA
min

,andofu.(2(n - 1) )1/2
inf r(a

1
40) ,

-

and approximate upper percentage points of u
max

= (2(n - 1))
1/2

sup r(a
1'

f
'

n)

were determined by generating 500 samples for p = 2 , n = 10,20 , and

P=5, n = 10 , at values of a = .01, .02, .025, .05(.05).25 . In

addition, approximate percentage points of W* , u* and u)f were
min min ' max

determined for p = 3 , n = 10 and the same values of a , where the

asterisk indicates the use of a polynomial mapping rather than a hyperplane

mapping of X .

The powers of the above tests were then determined against the

following, distributions.

p = 2 : LN X. independent log normal

U X. independent uniform

t
4

X. independent t4

t
10

Xi independent t10

N - LN X1 normal, X2 log normal, X1,X2 independent

N U X1 normal, X2 uniform, X1,X2 independent

N 1;4

N - t
10

BVN(.5,.5)

BVN(.75,.5)

X1 normal, X2 t4 , X1,X2 independent

X1 normal, X2 t10 , X1, X2 independent

(X1,X2) mixture of bivariate normals

where BVN(p,p) has density
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Pf ) (1 - p

where

2)

2
) expi
-1/2 , v2-

p2)}
f
p

(y, x
2

) (211)
-1

(1 - p
1 '2

= 5 : LN, U, t10 .

In Table 1 appear the results for a = .10 , p = 2 , n = 10 and 20 .

Other values of a gave comparable results

TABLE 1

EMPIRICAL POWERS FOR a = .10 , p = 2 , n = 10 AND 20

n = 10

W
P

w .

nun
u . u
mu', max W u

LN .75 .78 .21 .72 .13

U .08 .12 .18 .15 .32

t
4

.30 .26 .17 .23 .17

t
10

.18 .14 .13 .13 .13

N-LN .53 .54 .13

N-U .13 .14 .19

N-t
4

.20 .16 .14

N-t
10

.15 .16 .15

BVN(.5, .5) .15 .13 .13

BVN(.75,.5) .14 .12 .12

n = 20

W
Wmin

:LB .97 .99

U .03 .22

t .38 .36

t10 .30 .25

N-LN .81 .87

N-U .09 .18

N-t
4

.26 .24

N-t
10

.23 .22

BVN(.5, .5) .17 .16

BVN(.75, .5) .16 .14

min' max

.47

.51

.33

.21

.22

.54

.21

.21

.18

1.615

W u

.96 .14

.39 .53

.27 .24

.18 .14
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The columns headed W and u give the empirical powers for n 10

and 20 in the univariate case for W and u reproduced from Shapiro,

Wilk and Chen (1968). The results for a = .10 p = 3 , n = 10 are

given in Table 2.

TABLE 2

EMPIRICAL POWERS FOR a = .10 , p = 3 , n = 10

W
p

W u u W.
min

u*. u*
min' max W u_

LN .64 .64 .18 .62 .14 .72 .13

U .09 .11 .10 .14 .15 .15 .32

t
10

.16 .14 .11 .17 .14 .13 .13

9. CONCLUSIONS

The power of W was generally very close to that of W over the
min

range of bivariate distributions considered, except for the bivariate

uniform distribution where the W test appeared to be biased. The

bivariate u test was much less powerful for skewed distributions, but

superior for the bivariate uniform or normal-uniform. These results are

not unexpected reflecting similar performances for W and u in the uni-

variate
min

equivalent,

and again superior to u for the lognormal, although for the uniform and

t
10

alternatives all tests had very low power for n = 10 . The powers

for the W* and u* tests based on polynomial mappings were very close to

those of the tests based on hyperplane mappings, suggesting that the simpler

polynomial mappings may be quite satisfactory.
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I am grateful to L. J. Gleser and J. A. Hartigan for helpful comments,

and to Dorothy Thayer for the programming. A program to obtain W and
min

may be obtained from Mrs. Thayer, Division of Data Analysisu . ,u
run max

and Research, Educational Testing Service, Princeton, N.J. 08540.
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